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L iquid Crystals, 1997, Vol. 23, No. 6, 803 ± 811

Stable con® gurations in hybrid nematic cells in relation to

thickness and surface order

by H. G. GALABOVA*, N. KOTHEKAR and D. W. ALLENDER

Liquid Crystal Institute and Physics Department, Kent State University, Kent,
Ohio 44242, USA

(Received 4 June 1997; accepted 7 July 1997 )

The phase diagram of equilibrium con® gurations in thin hybrid nematic cells has been
investigated in the framework of Landau± de Gennes theory extended to include weak surface
anchoring. Surface interactions linear in the tensor order parameter were assumed and
biaxiality was induced by the surfaces. It was found that in addition to the usual con® guration
where the director bends continuously from one plate to the other, there is also a possible
con® guration where bend does not occur, but where there is an eigenvalue exchange; i.e. the
eigenvector of the tensor order parameter associated with the eigenvalue of the largest
magnitude is diVerent in diVerent regions of the cell. Furthermore, for very small cell thickness
a third possibility occurs: the eigenvector corresponding to the eigenvalue with the largest
magnitude is uniform throughout the cell; it is either parallel or perpendicular to both plates
depending upon the dominant surface interaction. Continuous transitions occur between the
diVerent con® gurations.

1. Introduction In the framework of the Landau± de Gennes formalism
The elastic properties of nematic liquid crystals are [6], the properties of nematic liquid crystals are

usually studied using Frank theory [1] where the nem- described in terms of a tensor order parameter which in
atic phase is described in terms of a director nÃ along the case of a biaxial nematic has ® ve independent
which the molecules are preferentially oriented, and a components, all spatially dependent. It was suggested
set of elastic constants which depend on the degree of by Gartland et al. [7] that the boundary conditions
orientational order S . The nematic director is considered imposed on the liquid crystal can be satis® ed by a biaxial
to vary in space, but the degree of order is assumed con® guration where an eigenvalue exchange occurs; i.e.
to be spatially independent and aVected only by the eigenvector of the tensor order parameter associated
temperature. with the eigenvalue of the largest magnitude switches

It is of interest to know how the introduction of from one of the local principal axes to another. In a
spatial dependence in the degree of order would aVect theoretical study of a hybrid nematic cell having homeo-
the description of phenomena usually interpreted in tropic alignment at one plate and homogeneous at the
terms of Frank elastic theory. Generalization of Frank other [8], a second order transition was found to occur,
theory to include variable degree of order was done by from the usual con® guration where the director bends
Ericksen [2] and implemented in a simpli® ed version continuously between the bounding plates, to an eigen-
by other authors [3± 5] who arrived at the conclusion value exchange con® guration when the cell thickness is
that the generalized theory may be suitable for describing decreased. However, only strong anchoring and uniaxial
line and plane defects. However, both Frank theory and order at the surfaces were considered. It is relevant also
its generalization are applicable only to uniaxial nematic to take into account the ® nite anchoring energy between
phases. As is well known, liquid crystal molecules that the liquid crystal and walls, as well as the biaxial order
form nematic phases are not axially symmetric. However, at the homogeneous surface. In related work reported
bulk nematic phases in low molecular weight thermo- elsewhere [9] the eVect of a weak surface interaction
tropic systems are so far observed to be uniaxial. Because

was included for a twisted nematic ® lm where an eigen-
surfaces are anticipated to induce biaxiality, the descrip-

value exchange con® guration was also found.
tion of nematic phases in restricted geometries should

Weak anchoring conditions in the framework of
allow for that possibility.

Landau± de Gennes theory have been a subject of theor-
etical investigation ever since the work of Sheng on
weak homeotropic anchoring in a semi-in® nite sample*Author for correspondence.
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D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
1
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



804 H. G. Galabova et al.

[10]. Throughout the years the cases of both semi- At any j, the tensor order parameter in the lab
reference frame is given byin® nite and ® nite nematic samples with homeotropic

[10± 12] and planar [13± 16] surface anchoring have
been studied. In this work we turn our attention to the Q ij=

S

2
( 3n in j Õ d ij) +

P

2
(m im j Õ l ilj ) (1 )

theoretical treatment of homogeneous surface anchoring
in the framework of Landau± de Gennes theory, and we where S is the usual uniaxial order parameter and P is
further investigate the diVerent con® gurations that can a measure of the biaxiality.
be realized in a hybrid nematic cell, this time allowing In terms of S , P and the bend angle h, the tensor
for weak surface interactions and biaxiality at the homo- order parameter has the following form:
geneous plate. We also study the eVect of variable
anchoring on the conditions required for a bend to
eigenvalue exchange transition to occur.

2. Theory

Q =
1

4 AS +P + ( 3S Õ P) cos 2h

( 3S Õ P) sin 2h

0

( 3S Õ P) sin 2h 0

S +P Õ ( 3S Õ P) cos 2h 0

0 Õ 2 (S+P)B .

(2 )We consider a nematic liquid crystal con® ned between
two bounding plates placed at j=0 and j=d in the
lab reference frame having orthogonal unit vectors jÃ , nÃ ,

and fÃ ( ® gure 1). The plate at j=0 favours homeotropic
alignment with the easy direction described by the unit
vector jÃ , and the plate at j=d favours homogeneous Here all three parameters S , P, and h are spatially
alignment with an in-plane easy axis along the unit dependent.
vector nÃ . At any point between the plates, the nematic The tensor above has a more convenient representa-
can be described by a biaxial tensor order parameter tion [7, 8] given by
diagonal in the reference frame of the local principal
axes nÃ , mÃ , and lÃ . We assume that lÃ is along fÃ =jÃ Ö nÃ

throughout the cell, nÃ =cos hjÃ + sin hnÃ , and mÃ = Q =
1

6
1/2 A z +3

1/2
x 3

1/2
y 0

3
1/2

y z Õ 3
1/2

x 0

0 0 Õ 2zB , (3 )
Õ sin hjÃ +cos hnÃ , where h is the bend angle. At any j

the nematic order is assumed to be uniform in the n ± f

plane. Thus, the spatial dependence of the tensor order where
parameter is reduced to only one spatial coordinate, i.e.
the j coordinate. These assumptions, together with the x =

2
1/2

4
( 3S Õ P) cos 2h

equal elastic constants approximation used in our calcu-
lations, rule out the possibility of striped con® gurations
[17± 20] which will not be considered here. y =

2
1/2

4
( 3S Õ P) sin 2h

z =
6

1/2

4
(S +P) .

The Landau± de Gennes free energy of the system,
allowing for weak surface interactions, can be written in
the form

F= P fb dV + P ( fs0+ fs1) dS, (4 )

where

fb=
1

2
AtrQ

2 Õ
1

3
BtrQ

3+
1

4
C ( trQ

2
)
2

+
1

2
L 1 (qiQ jk ) (qiQ jk ) +

1

2
L 2 (qiQ ij) (qkQkj ) (5 )

is the bulk free energy density including elastic terms
[21]. The elasticity here is connected not only withFigure 1. Hybrid cell geometry: homeotropic alignment at

j=0 and homogeneous at j=d ; lÃ =fÃ =jÃ Ö nÃ throughout the cell. variations in the molecular orientation, but also with
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805Stable con® gurations in hybrid cells

variations in the degrees of order S and P. The term For strong anchoring at both plates fx,y,z(g=0 ) =
fx,y,z(g=1 ) =0 and x(g) , y (g) , and z (g) satisfy the Euler±

fs0=G0 Q ijjÃ ijÃ j (6 ) Lagrange equations obtained by minimizing the bulk
free energy only. However, in the case of weak surfaceis the surface free energy contribution from the homeo-
anchoring, the values of the functions at the end pointstropic surface. It corresponds to having uniaxial order
are not ® xed. This fact does not change the Euler±at the surface and when G0<0, this term favours align-
Lagrange equations, but aVects only the boundary condi-ment perpendicular to the homeotropic plate. The sur-
tions for the problem. Assuming that fx (g), fy (g) , andface free energy contribution from the homogeneous

surface has the form fz (g) are independent of each other and that fx,y,z(g=0 )

can be varied independently of fx,y,z(g=1 ), we ® nd the
fs1=G1Q ijjÃ ijÃ j+B1 Q ijnÃ inÃ j . (7 )

following diVerential equations for x(g) , y (g), and z(g) :

The term with B1 , where B1<0, favours alignment along
the easy axis nÃ , and the term with G1 , G1 being positive,
favours orientation in the plane of the surface and
introduces biaxiality at the homogeneous plate. If the
surface is to favour alignment along the easy axis nÃ , at
any given B1 not all values are allowed for the G1

coeYcient. Calculations with a semi-in® nite cell have
shown that the allowed values of G1 are those for which
0 < G1 < |B1 |, where G1=0 corresponds to uniaxial

A 1 +
l2

2l1B d2
x

dg
2 +

l2

12
1/2

l1

d2
z

dg
2 Õ

a

l1
x

+2
b

l1
zx Õ

1

l1
x(x

2+y
2+ z

2
) =0

A 1 +
l2

2l1B d2
y

dg
2 Õ

a

l1
y

+2
b

l1
yz Õ

1

l1
y (x

2+y
2+ z

2
) =0

A 1 +
l2

6l1B d2
z

dg
2 +

l2

12
1/2

l1

d2
x

dg
2 Õ

a

l1
z

+
b

l1
(x

2+y
2 Õ z

2
) Õ

1

l1
z(x

2+y
2+ z

2
) =0,

(9 )
order at the surface.

Scaled to dimensionless units, the Landau± de Gennes
free energy has the form

F = P
1

0 G a

2
(x

2+y
2+ z

2
) Õ bz A x

2+y
2 Õ

z
2

3 B
+

1

4
(x

2+y
2+ z

2
)
2+

l1

2
[(x ¾ )2+ ( y ¾ )2+ (z ¾ )2]

with boundary conditions given by+
l2

2 CA 1

6
1/2 z ¾ +

1

2
1/2 x ¾ B2

+
1

2
( y ¾ )2DHdg

A 1 +
l2

2l1B x ¾ ( 1 ) +
l2

12
1/2

l1
z ¾ (1 ) +

vx1

l1
=0+vx1 x( 1 ) Õ vz1z ( 1 ) Õ

v0

6
1/2 z ( 0 ) Õ

v0

2
1/2 x( 0 ), (8 )

where F =F/A Cd, a=A/C, b=B/( 6
1/2

C ) , l1,2=L 1,2 /Cd
2
, A 1 +

l2

2l1B x ¾ ( 0 ) +
l2

12
1/2

l1
z ¾ ( 0 ) +

v0

2
1/2

l1
=0

vz1=Õ (G1+B1 )/( 6
1/2

Cd ) , vx1=(G1 Õ B1 )/( 2
1/2

Cd ) , and
v0=G0 /Cd. The area of the cell is denoted by A, and
g=j/d. The coupling coeYcients v0 , vx1 , and vz1 are A 1 +

l2

2l1B y ¾ ( 1 ) =0
all positive and the signs of the terms with which they
enter the free energy are chosen in such a way that
alignment along jÃ is favoured at the homeotropic surface, A 1 +

l2

2l1B y ¾ ( 0 ) =0 (10)
and alignment along nÃ at the homogeneous one.

A 1 +
l2

6l1B z ¾ (1 ) +
l2

12
1/2

l1
x ¾ ( 1 ) Õ

vz1

l1
=03. Minimization of the free energy

To minimize the free energy F we follow the standard
variational procedure [22]; that is, we introduce new A 1 +

l2

6l1B z ¾ (0 ) +
l2

12
1/2

l1
x ¾ ( 0 ) +

v0

6
1/2

l1
=0.functions fx (g), fy (g) , and fz(g) , and a scale factor a such

that the varied paths are given by

For calculational simplicity the equal elastic constantsx(g, a) =x(g) +a fx (g)

approximation ( l2=0 ) was used. With this approxi-
y (g, a) =y (g) +a fy (g)

mation the equations and the boundary conditions are
simpli® ed toz (g, a) = z (g)+a fz(g) .
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806 H. G. Galabova et al.

d2x

dg
2 Õ

a

l1
x +2

b

l1
zx Õ

1

l1
x(x

2+y
2+ z

2
) =0

d2z

dg
2 Õ

a

l1
z+

b

l1
(x

2+y
2 Õ z

2
) Õ

1

l1
z (x

2+y
2+ z

2
) =0,

d2y

dg
2 Õ

a

l1
y +2

b

l1
yz Õ

1

l1
y (x

2+y
2+ z

2
) =0

(11)

and

x ¾ ( 1 ) =Õ
vx1

l1

x ¾ ( 0 ) =Õ
v0

2
1/2

l1 Figure 2. Order parameter ymax as a function of D
2 for

a= 0, b =1/6
1/2

, l2=0, G1= 0´05 |B1 |, S1= 1´3, and
1/S0=150.y ¾ ( 1 ) =0

y ¾ ( 0 ) =0 (12)
exists it is always the stable solution. In the case of
strong anchoring at both plates PalVy-Muhoray et al.z ¾ (1 ) =

vz1

l1 [8] found that when the cell thickness is large, the
ymax Þ 0 case is always a solution. When the anchoring

z ¾ (0 ) =Õ
v0

6
1/2

l1
is weak, we ® nd a similar result: for D >DC bend occurs.
However, as D decreases, the sequence of con® gurations

respectively. The equations were solved numerically is as follows: bend, non-bend, bend, non-bend, where
using the code COLNEW [23] which solves mixed the re-entrance of bend (between points A and B in
systems of ordinary diVerential equations. ® gure 2) depends on the anchoring strength coeYcients.

4.1. Con® gurations4. Results and discussion

Using the method of analysis developed in ref. [8] we The nematic director is associated with that eigenvec-
tor of the tensor order parameter which corresponds toconsider the value of y = 1

4 ( 3S Õ P) sin 2h as a parameter
to distinguish between the con® guration where the direc- the eigenvalue with the largest magnitude. The nematic

is uniaxial if the other two eigenvalues are equal, andtor nÃ bends between the two plates and the predomi-
nantly biaxial con® gurations where eigenvalue biaxial if they are not. When no bend occurs, the

boundary conditions for the problem are satis® ed by aexchanges occur. For strong anchoring, y =0 at each
surface because h is either 0 or p/2. Furthermore, y (g) is con® guration where the largest eigenvalue is associated

with a diVerent eigenvector in diVerent regions of thesymmetric with respect to the middle of the cell.
Therefore, its maximum value is ymax =y ( 0´5 ) and if cell. This type of con® guration was named an èigenvalue

exchange’ con® guration by PalVy-Muhoray et al. [8].y ( 0´5 ) Þ 0, bend has occurred. Conversely, if bend does
not occur, y ( 0´5 ) =0. However, when the anchoring is When an eigenvalue exchange occurs, the nematic direc-

tor changes its orientation discontinuously. Typical casesweak, y does not have to vanish at the plates and does
not have to take its maximum value in the middle of of eigenvalue exchanges are shown in ® gure 3. Since in

all cases y =0 throughout the cell, the tensor orderthe cell. Even in this case though, ymax=0 indicates that
no bend has occurred. By examining the behaviour of parameter is diagonal, and the eigenvalues are simply

the diagonal elements Q11 , Q22 , and Q33 . In ® gure 3 (a)the bend angle h, it was found that whenever ymax Þ 0,
bend does happen. To illustrate when bend occurs, in only one eigenvalue exchange can be seen; the exchange

occurs where Q22 changes its sign. If we denote with® gure 2 we show the maximum value of y as a function
of D

2=1/l1 for ® xed values of the liquid crystal material g=g22 the point where Q22 =0, then for g<g22 the
director is jÃ and the molecules on average are orientedparameters and ® xed surface anchoring strengths. Note

that 1/l1~d
2
, and thus D is a scaled cell thickness. The perpendicularly to the plates. For g >g22 the largest,

in magnitude, eigenvalue is Q33 which is negative, show-case of ymax =0 is a solution for all values of D , although
not necessarily the stable solution. The case of ymax Þ 0 ing that the orientation is in a plane perpendicular to fÃ ,

which is called a planar alignment. Thus, the orientationis a solution only for certain values of D , and when it
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807Stable con® gurations in hybrid cells

homeotropic plate. If g11 is the point where Q11=0,
then for g>g11 the director is nÃ , and for g <g11 it is fÃ .

Thus, the orientation changes from planar to parallel to
the rubbed direction at g11 . We name the con® gurations
shown in ® gure 3 (a) and (b) , E ¾ and E ² , respectively.
Figure 3 (c) shows a con® guration where two eigenvalue
exchanges occur. For g >g11 the molecules on average
are oriented parallel to the rubbed direction nÃ . For
g<g22 the orientation is perpendicular to the plates
and for g22 <g <g11 the order is planar. We call this
con® guration E.

For very small cell thickness, there are con® gurations
where no bend or eigenvalue exchanges occur, but the
bend angle h remains either 0 ß or 90 ß depending upon
the dominant surface interaction. Figure 4 shows the
eigenvalues for the con® gurations h=0 and h =p/2. As
can be seen, the largest eigenvalue is associated with the
same eigenvector throughout the cell. The director is jÃ

for the h=0 and nÃ for the h=p/2 con® guraitons. For
the h=0 con® guration, the biaxiality increases when
the homogeneous plate is approached. For the h=p/2

Figure 3. Eigenvalues of the tensor order parameter for the
eigenvalue exchange con® gurations for a= 0, b = 1/6

1/2
,

l2=0, and G1=0´05 |B1 |: (a) one eigenvalue exchange (E ¾ )
close to the homogeneous plate for 1/S0= 0´5 and D =2;

(b) one eigenvalue exchange (E ² ) close to the homeotropic
plate for 1/S0= 10 and D = 15; (c) two eigenvalue
exchanges (E ) for 1/S0=100 and D =100.

changes from homeotropic to planar at g22 . In ® gure 3 (a)
Figure 4. Eigenvalues of the tensor order parameter for the

the eigenvalue exchange occurs close to the homo- constant angle con® gurations for a =0, b =1/6
1,2

, l2=0,
geneous surface. Figure 3 (b) also shows one eigenvalue and G1=0´05 |B1 |: (a) h= 0 ß for 1/S0=0´1 and D = 0´6;

(b) h =p/2 for 1/S0=10 and D =5.exchange, but now the exchange occurs close to the
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808 H. G. Galabova et al.

con® guration the opposite occurs: the nematic is more amount of biaxiality at the homogeneous surface. The
parameters A , B, C , and L 1 , entering the Landau±biaxial at the homeotropic plate.

In the case when the director bends continuously de Gennes free energy expression [equation (8)] were
held ® xed in all calculations. Since S0 is proportional tobetween the plates, y varies throughout the cell, and the

tensor order parameter is not diagonal. Figure 5 shows the homeotropic anchoring strength, and S1 is propor-
tional to the polar anchoring strength at the homo-the eigenvalues E1 , E2 , and E3 of the tensor order

parameter, and the change in the bend angle when geneous plate, the phase diagrams show the possible
con® gurations in terms of thickness and polar anchoringdirector bend occurs. As can be seen in ® gure 5 (a) ,

the bulk nematic exhibits considerable biaxiality; this strengths.
The phase diagrams obtained for a set of decreasingbiaxiality decreases when the cell thickness is increased.

In the limit of an in® nitely thick cell both the bulk and values of S1 are shown in ® gures 6± 9. Note that in all
diagrams the horizontal axis is 1/S0 and, thus, strongthe surfaces become uniaxial, the degree of order S does

not change, and the bend angle h varies linearly with g. anchoring corresponds to the axis origin. The con® gura-
tions for S1=1´3 are shown in ® gure 6. Figure 6 (a) doesThis is the usual behaviour known from applying Frank

elastic theory to the problem of a bend cell. not start at the origin and the part of the diagram that
is left out is shown in ® gure 6 (b) . For comparatively
weak homeotropic anchoring, the bend con® guration is4.2. Phase diagrams

Phase diagrams were calculated in the 1/S0 Õ D
2 plane the stable solution down to very small thickness where

a continuous transition to the E ² con® guration occurs.for a set of diVerent values of S1 , where S0=G0 /(L 1 C )
1/2

and S1=B1 /(L 1C )
1/2 are dimensionless anchoring The E ² con® guration, where one eigenvalue exchange

occurs close to the homeotropic plate, is a solution in astrength coeYcients. The anchoring strength coeYcient
G1 was chosen to be two orders of magnitude smaller very narrow region. When the cell thickness is decreased,

the position where the eigenvalue exchange occursthan B1 for any choice of B1 , thus causing a small
[® gure 3 (b)] moves closer and closer to the homeotropic
plate until it ® nally èscapes’ from the cell and the
h=p/2 con® guration is obtained. The dashed line in
the ® gure denotes the boundary between the E ² and
h=p/2, but no transition occurs along a dashed line.
The E ² con® guration simply evolves to the h=p/2
con® guration.

For stronger homeotropic anchoring a transition from
the bend to the exchange E con® guration occurs at
larger cell thickness, and the bend con® guration is
re-entered at small cell thickness. When the cell thickness
is decreased further, again a transition to the E ² con® g-
uration occurs and this con® guration eventually evolves
to h=p/2. For values of S0 such that S0 is of the order
of S1 or a little weaker, there is no re-entrance to the
bend phase at smaller cell thickness. Now with decreas-
ing cell thickness, the positions where the two eigenvalue
exchanges of the E con® guration occur move closer and
closer to the homeotropic plate until they escape from
the sample one by one. Thus, the con® guration E evolves
to the E ² con® guration, and the E ² evolves to h=p/2
when the cell thickness is decreased.

When the homeotropic anchoring is stronger than the
polar anchoring at the homogeneous plate [® gure 6 (b)],

with decreasing cell thickness the exchange E con® gura-
tion ® rst evolves to the E ¾ con® guration with one
eigenvalue exchange close to the homogeneous plate.
When the cell thickness is decreased further, the E

Figure 5. Bend con® guration for a =0, b =1/6
1,2

, l2=0, and
con® guration is re-entered, after which it evolves to

G1=0´05 |B1 |; (a) eigenvalues of the tensor order para-
h=p/2 going through E ² . For very strong homeotropicmeter for 1/S0=10 and D = 180; (b) bend angle for

1/S0=10 and D =180. anchoring, when the cell thickness is decreased the E ¾
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809Stable con® gurations in hybrid cells

Figure 7. Phase diagram in the 1/S0 Õ D
2 plane for a =0,

b= 1/6
1/2

, l2= 0, G1=0´05 |B1 |, and S1=0´45; (a) weakFigure 6. Phase diagram in the 1/S0 Õ D
2 plane for a= 0,

homeotropic anchoring; (b) strong homeotropicb = 1/6
1/2

, l2= 0, G1=0´05 |B1 |, and S1=1´3; (a) weak
anchoring.homeotropic anchoring; (b) strong homeotropic

anchoring.

has happened to the exchange E con® guration
[® gure 7 (a)]. The region where the bend con® gurationcon® guration evolves to h=0, and E ¾ is re-entered at

smaller cell thickness. The E ¾ con® guration evolves con- occurs at small cell thickness is now stable even for very
strong anchoring. In ® gure 7 (b) it can be seen that thesecutively to E, E ² , and h=p/2 when the cell thickness

is decreased further. bend solution can also be re-entered from the E ¾ con® g-
uration and that the regions of the E ¾ and h=0 con® g-The possible con® gurations for the case of S1=0´45

are shown in ® gure 7. It can be seen that the phase urations have become larger.
Figure 8 shows the possible con® gurations when S1=diagram has undergone several changes. The region of

the E ² con® guration has become smaller and the same 0´27. Here the regions of the E ² and E con® gurations
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5. Concluding remarks

According to the results discussed in the previous
sections, the con® gurations that may occur in a hybrid
nematic cell depend strongly on the surface anchoring
strengths and cell thickness. For large cell thickness the
con® guration where the director bends continuously
between the bounding surfaces is always stable regardless
of the surface anchoring strengths. For an eigenvalue
exchange con® guration to occur, the cell must be
suYciently thin. Taking A =0, L 1~10 Õ

11 J m Õ
1 and

B # C =0´5 Ö 10
6 J m Õ

3 for MBBA [24], the required
cell thickness is in the range of 10 Õ

2 to 10 Õ
1
mm. This

estimation strongly depends on the magnitude of L 1 and
on A (i.e. the temperature). The eigenvalue exchange
con® guration could be possible in thicker cells for liquid
crystals with larger elastic constants, or at higher
temperature.

When the thickness requirement is satis® ed, which
con® guration is stable depends upon the anchoring
strengths. Taking into account how the regions of the
various con® gurations change for diVerent values of S1 ,Figure 8. Phase diagram in the 1/S0 Õ D

2 plane for a= 0,

b= 1/6
1/2

, l2=0, G1= 0´05 |B1 |, and S1=0 2́7. it can be concluded that con® gurations of the eigenvalue
exchange type may occur for comparatively strong S1

and S0 of the same order or stronger.
All results were obtained using the equal elastic con-have disappeared completely and the regions of the E ¾

stants approximation ( l2=0 ) , keeping the temperatureand h=0 have become larger. In ® gure 9, where S1=
at the supercooling limit (a =0 ), and setting B/C =1.0´13, the region of the E ¾ con® guration has become very
Calculations performed with l2 Þ 0 did not show anysmall and it disappears for smaller values of S1 . When
considerable eVect on the phase diagrams. The results,S1 is decreased further, the only possible non-bend
however, are very sensitive to temperature and the B/Ccon® gurations become h=0 and h=p/2, and there are
ratio. For a >0 and B/C <1 the region E where twono eigenvalue exchange con® gurations.
eigenvalue exchanges occur expands very rapidly to
larger D. If the nematic to isotropic transition does not
occur ® rst, the eigenvalue exchange con® guration may
be observable even for conventional liquid crystals in a
narrow temperature interval in cells about 1 mm thick.
Thus, eigenvalue exchange con® gurations may be found
in cells with liquid crystals having small B and large
elastic constants at temperatures close to the clearing
point.

Another way to look for con® gurations of the eigen-
value exchange type is in liquid crystals con® ned to
materials, e.g. Silica Aerogel or Vycor glass, which have
very small pore sizes: 0 0́175 and 0 0́07 mm, respectively
[25]. However, a diYculty with these materials is that
the pore shapes and anchoring strengths cannot be
reliably controlled.

This work was supported by the National Science
Foundation under the Science and Technology Center
ALCOM Grant No. DMR89-20147.

References

Figure 9. Phase diagram in the 1/S0 Õ D
2 plane for a= 0, [1] Frank, F. C., 1958, Discuss. Faraday Soc., 25, 19.

[2] Ericksen, J. L., 1991, Arch. Ration . Mech. Anal., 113, 97.b= 1/6
1/2

, l2=0, G1= 0´05 |B1 |, and S1=0 1́3.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
1
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



811Stable con® gurations in hybrid cells

[3] M izel, V. J., Roccato, D ., and Virga, E. G ., 1991, [16] Kothekar, N ., Allender, D . W ., and Hornreich,
Arch. Ration . Mech. Anal., 116, 115. R. M ., 1995, Phys. Rev. E, 52, 4541.

[4] Ambrosio, L., and Virga, E. G ., 1991, Arch. Ration . [17] Lavrentovich, O. D ., and Pergamenshchik, V. M.,
Mech. Anal., 114, 335. 1990, Mol. Cryst. liq . Cryst., 179, 125.

[5] Roccato, D ., and Virga, E. G ., 1992, Continuum Mech. [18] Lavrentovich, O. D ., and Pergamenshchik, V. M.,
T hermodyn., 4, 121. 1994, Phys. Rev. L ett., 73, 979.

[6] de Gennes, P. G ., and Prost, J., 1993, T he Physics of [19] Sparavigna, A., Komitov, L., Stebler, B., and
L iquid Crystals (Oxford: Clarendon Press). Strigazzi, A., 1991, Mol. Cryst. liq . Cryst., 207, 265.

[7] Gartland, E. C., Jr, Muhoray-Palffy, P., and Varga, [20] Sparavigna, A., and Strigazzi, A., 1992, Mol. Cryst.
R. S., 1991, Mol. Cryst. liq . Cryst., 199, 429. liq . Cryst., 221, 109.

[8] Palffy-Muhoray, P., Gartland, E. C., and Kelly, [21] Chandrasekhar, S., 1992, L iquid Crystals (Cambridge:
J. R., 1994, L iq. Cryst., 1, 713. Cambridge University Press).

[9] Kothekar, N ., and Allender, D . W . ( in press). [22] Hans Sagan, 1961, Boundary and Eigenvalue Problems
[10] Sheng, P., 1976, Phys. Rev. L ett., 37, 1059.

in Mathematical Physics (New York: John Wiley).[11] Allender, D . W ., Henderson, G . L., and Johnson,
[23] Ascher, U ., Christiansen, J., and Russel, R. D ., 1981,

D . L., 1981, Phys. Rev. A , 24, 1086.
ACM T rans. Math . Software, 7, 209.[12] Sheng, P., 1982, Phys. Rev. A , 26, 1601.

[24] Priestly, E. B., Wojtowicz, P. J., and Sheng, P (eds),[13] Hornreich, R. M ., Kats, E. I., and Lebedev, V. V.,
Introduction to L iquid Crystals (New York and London:1992, Phys. Rev. A , 46, 4935.
Plenum Press).[14] L’vov, Y., Hornreich, R. M ., and Allender, D . W .,

[25] Crawford, G . P., and Doane, J. W ., 1993, Mod. Phys.1993, Phys. Rev. E, 48, 1115.
L ett. B, 7, 1785.[15] Kothekar, N ., Allender, D . W ., and Hornreich,

R. M ., 1994, Phys. Rev. E, 49, 2150.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
1
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


